Pearson Edexcel

Mark Scheme (Results)

January 2022

Pearson Edexcel International Advanced
Subsidiary Level
In Chemistry (WCH11)
Paper 01: Structure, Bonding and Introduction to Organic Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2022
Question Paper Log Number P67127A
Publications Code WCH11_01_2201_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

Using the mark scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean ALLOWing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit. () means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer. ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Section A

Question Number	Answer	Mark
$\mathbf{1 (a)}$	The only correct answer is C (XY2)	(1)
	\mathbf{A} is not correct because Group 2 elements combine with Group 7 elements in the ratio 1:2	
B is not correct because Group 2 elements combine with Group 7 elements in the ratio 1:2		
D is not correct because Group 2 elements combine with Group 7 elements in the ratio 1:2		

Question Number	Answer	Mark
$\mathbf{1 (b)}$	The only correct answer is D (in the liquid state and in aqueous solution only)	(1)
	\mathbf{A} is not correct because the ions do not move in the solid state	
	\mathbf{B} is not correct because the ions do not move in the solid state	
\mathbf{C} is not correct because the ions do not move in the solid state		

Question Number	Answer	Mark
$\mathbf{2}$	The only correct answer is B (NaF)	(1)
	\mathbf{A} is not correct because the Cl^{-}ion is larger than F^{-}so ionic bonding is weaker in NaCl	
\mathbf{C} is not correct because the K^{+}ion is larger than Na^{+}and the Cl - ion is bigger than F^{-}		
\mathbf{D} is not correct because the K^{+}ion is larger than Na^{+}		

Question Number	Answer	Mark
$\mathbf{3}$	The only correct answer is C (a yellow colour has moved to the positive end and a blue colour to the negative end) \mathbf{A} is not correct because the green colour is formed from yellow and blue ions \mathbf{B} is not correct because the green colour is formed from yellow and blue ions \mathbf{D} is not correct because the blue Cu^{2+} ions will move to the negative end and the yellow $\mathrm{CrO}_{4}{ }^{2-}$ ions will move to the positive end	(1)

Question Number	Answer	Mark
$\mathbf{4}$	The only correct answer is D $\quad\left(\mathrm{Al}^{3+}\right)$	(1)
	\mathbf{A} is not correct because the N^{3-} ion has fewer protons so is larger	
\mathbf{B} is not correct because the F^{-}ion has fewer protons so is larger		
\mathbf{C} is not correct because the Na^{+}ion has fewer protons so is larger		

Question Number	Answer	Mark
$\mathbf{5}$	The only correct answer is D (small radius and large charge)	(1)
	\boldsymbol{A} is not correct because radius should be small	
\mathbf{B} is not correct because the radius should be small and the charge should be large		
\mathbf{C} is not correct because the charge should be large		

Question Number	Answer	Mark
$\mathbf{6}$	The only correct answer is A (large radius and large charge)	(1)
	\mathbf{B} is not correct because the charge should be large	
C is not correct because the charge and radius should be large		
D is not correct because radius should be large		

Question Number	Answer	Mark
$\mathbf{7}$	The only correct answer is $\mathbf{D} \quad\left(\mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})\right)$	(1)
	\mathbf{A} is not correct because NaNO_{3} is soluble	
\mathbf{B} is not correct because the charge on the barium ion is incorrect		
\mathbf{C} is not correct because the charge on the sodium ion is incorrect		

Question Number	Answer	Mark
$\mathbf{8}$	The only correct answer is A $\left(\mathrm{CO}_{2}\right)$	(1)
	\mathbf{B} is not correct because HCl is a polar molecule	
	\mathbf{C} is not correct because $\mathrm{H}_{2} \mathrm{O}$ is a polar molecule	
\mathbf{D} is not correct because NH_{3} is a polar molecule		

$\left.\begin{array}{|l|l|c|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Answer } & \text { Mark } \\ \hline \mathbf{9} & \text { The only correct answer is C (0.00005\%) } & \text { (1) } \\ & \mathbf{A} \text { is not correct because the answer shows the percentage equal to ppm } \\ \text { B is not correct because the answer shows the ppm divided by } 100 \\ \mathbf{D} \text { is not correct because the correct answer has been divided by } 100\end{array}\right]$

Question Number	Answer	Mark
10(a)	The only correct answer is $\mathbf{B}\left(\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}+\mathrm{HBr}\right)$ \mathbf{A} is not correct because hydrogen is not produced \mathbf{C} is not correct because $\mathrm{CH}_{3} \mathrm{Br}$ is not a product D is not correct because neither CH_{4} nor $\mathrm{CH}_{2} \mathrm{Br}_{2}$ are products	(1)

Question Number	Answer	Mark
$\mathbf{1 0 (b)}$	The only correct answer is A (homolytic breaking of a Br-Br bond)	(1)
	\mathbf{B} is not correct because the Br-Br bond does not break heterolytically	
\mathbf{C} is not correct because the C-H bond is not broken by UV light		
D not correct because the C-H bond is not broken by UV light		

Question Number	Answer	Mark
$\mathbf{1 1}$	The only correct answer is B (general formula)	(1)
	\mathbf{A} is not correct because only the general formula is the same for all alkanes	
C is not correct because only the general formula is the same for all alkanes		
\mathbf{D} is not correct because only the general formula is the same for all alkanes		

Question Number	Answer	Mark
$\mathbf{1 2}$	The only correct answer is D (hexene and propane)	(1)
	\mathbf{A} is not correct because these products are possible	
	\mathbf{B} is not correct because these products are possible	

Question Number	Answer	Mark
$\mathbf{1 3}$	The only correct answer is C (4)	(1)
	\mathbf{A} is not correct because there are 4 isomers	
	\mathbf{B} is not correct because there are 4 isomers	
D is not correct because there are 4 isomers		

Question Number	Answer	Mark
$\mathbf{1 4}$	The only correct answer is B $\quad\left(7.22 \times 10^{21}\right)$	(1)
	\mathbf{A} is not correct because a 1:1 ratio has been used instead of 1:6	
	C is not correct because a 1:7 ratio has been used instead of 1:6 \mathbf{D} is not correct because this is the number of atomic mass units in the product	

Question Number	Answer	Mark
$\mathbf{1 5}$	The only correct answer is A (hydrogen chloride)	(1)
	B is not correct because sulfur is an impurity in alkane fuels and so sulfur dioxide can be produced during their combustion C is not correct because carbon particulates can be produced during the combustion of alkane fuels D is not correct because carbon monoxide can be produced during the combustion of alkane fuels	

Question Number	Answer	Mark
$\mathbf{1 6}$	The only correct answer is C (27.90 tonnes)	(1)
	\mathbf{A} is not correct because the wrong ratio (2:1) has been used instead of 1:2	
	\mathbf{B} is not correct because the wrong ratio (1:1) has been used instead of 1:2	
\mathbf{D} is not correct because the wrong ratio (1:3) has been used instead of 1:2		

Question Number	Answer	Mark
$\mathbf{1 7}$	The only correct answer is B $\left(0.40 \mathrm{dm}^{3}\right.$ of $\left.0.03 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{KCl}\right)$	(1)
	\mathbf{A} is not correct because it contains 0.02 mol of ions	
	\mathbf{C} is not correct because it contains 0.018 mol of ions	
\mathbf{D} is not correct because it contains 0.018 mol of ions		

$\left.\begin{array}{|l|l|c|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Answer } & \text { Mark } \\ \hline \mathbf{1 8} & \text { The only correct answer is C (39.2\%) } & \text { (1) } \\ & \mathbf{A} \text { is not correct because the O on the right-hand side has been multiplied by 2, not } 6 & \\ & \mathbf{B} \text { is not correct because the } O \text { on the right-hand side has been multiplied by 4, not } 6 \\ \mathbf{D} \text { is not correct because the mass of oxygen has been divided by the mass of } \mathrm{KCl}\end{array}\right)$

Section B

Question Number	Answer		Additional Guidance	Mark
19(a)(i)			Both masses required	(1)
	Measurement	Mass / g		
	Mass of empty crucible	21.21		
	Mass of crucible and magnesium sulfate before heating	26.71		
	Mass of crucible and magnesium sulfate after heating for 2 mins	24.12		
	Mass of magnesium sulfate	2.91		
	Mass of water	2.59		

| Question
 Number | Answer | Additional Guidance | Mark |
| :--- | :--- | :---: | :--- | :---: |
| $\mathbf{1 9 (b)}$ | An answer that makes reference to the following points: | (1) | Allow heat for longer
 Ignore any reference to repetition/ using a
 higher temperature/different flame/more
 magnesium sulfate/ any changes to the method
 Do not award heat under reflux for longer |
| • heat to constant mass/ until mass does not change | (2) | Allow more water is lost/given off
 Allow some water may have remained
 Allow all the water evaporated
 Ignore allow (reaction) to go to completion | |

Question Number	Answer	Additional Guidance	Mark
20(a)	An answer that makes reference to the following points - Cu $\begin{equation*} ([\mathrm{Ar}]) 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{1} \tag{1} \end{equation*}$ - Cu^{2+} ([Ar]) $3 \mathrm{~d}^{9}$	ALLOW 4s ${ }^{1} 3 d^{10}$ ALLOW $4 s^{0} 3 d^{9}$ Ignore $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ in both cases	(2)

Question	Answer					Additional Guidance	Mark
20(b)(i)					$\begin{aligned} & \text { (1) } \\ & \text { (1) } \end{aligned}$		(2)
	Isotope	Protons	Neutrons	Electrons		One mark for each correct row	
	${ }^{63} \mathrm{Cu}$	29	34	29			
	${ }^{65} \mathrm{Cu}$	29	36	29		Four or five correct scores one mark	
						Ignore working	

Question Number	Answer		Additional Guidance	Mark
20(b)(ii)	An answer that makes reference to the following points: - (atoms/elements that have) same number of protons/same proton number/ quoted same number of protons even if wrong - (but) different numbers of neutrons/neutron number	(1)	Ignore any reference to electrons but do not award if different to the number of protons Ignore if they state the wrong number of neutrons in the 2 isotopes. If they fail to mention numbers of protons and neutrons 'same atomic number but different mass number' scores (1) Do not award atomic mass for mass number Do not award molecules but penalise once only	(2)

Question Number	Answer	Additional Guidance	Mark
20(b)(iii)	- (isotopes have) the same electronic configuration	Allow same electron arrangement/electron(ic) structure Allow the same number of electrons Ignore the same number of protons Ignore the same number of electrons in the outer shell/same number of valence electrons Ignore same period/same group Ignore any given electronic configurations/number of electrons even if wrong Ignore any reference to neutrons	(1)

Question Number	Answer		Additional Guidance	Mark
20(b)(iv)	An explanation that makes reference to the following points: - expression relating isotopic masses A_{r} and X - abundance of $(\mathrm{Cu}) 63=0.8$ or 80% abundance of $(\mathrm{Cu}) 65=0.2$ or 20% Alternative method $65-63.4=1.6$ $63.4-63=0.4$ $\begin{aligned} & 0.4 / 2.0 \times 100=20 \% 65 \\ & 1.6 / 2.0 \times 100=80 \% 63 \end{aligned}$	(1) (1) (1) (1)	Example of calculation $\begin{aligned} & 63.4=\frac{(1-X) \times 65)+(X \times 63)}{1} \\ & 63.4=65-65 X+63 X \\ & 63.4=65-2 X \\ & -1.6=-2 X \\ & X / 63=0.8 \\ & O R \\ & 63.4=\frac{(1-X) \times 63)+(X \times 65)}{1} \\ & 63.4=63-63 X+65 X \\ & 63.4=63+2 X \\ & 0.4=2 X \\ & X / 65=0.2 \end{aligned}$	(2)

		OR	
		$63.4=\frac{(100-\mathrm{X}) \times 65)+(\mathrm{X} \times 63)}{100}$	
		$6340=6500-65 \mathrm{X}+63 \mathrm{X}$	
		$6340=6500-2 \mathrm{X}$	
		$-160=-2 \mathrm{X}$	
		$\mathrm{X} / 63=80 \%$	
		OR	
		$63.4=\frac{(100-\mathrm{X}) \times 63)+(\mathrm{X} \times 65)}{100}$	
		$6340=6300-63 \mathrm{X}+65 \mathrm{X}$	
		$6340=6300+2 \mathrm{X}$	
		$40=2 \mathrm{X}$	
		$\mathrm{X} / 65=20 \%$	
		Correct answer with or without working scores (2)	

Question Number	Answer	Additional Guidance	Mark
20(c)(i)	- a correct balanced equation	$\begin{aligned} & \mathrm{CuCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CuSO}_{4}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\ & \text { or } \\ & \mathrm{CuCO}_{3}+2 \mathrm{H}^{+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$ Allow multiples Ignore state symbols even if incorrect Do not award $\mathrm{H}_{2} \mathrm{CO}_{3}$ as a product	(1)

Question Number	Answer		Additional Guidance	Mark
20(c)(ii)			Example of calculation	(4)
	- M1moles of sulfuric acid	(1)	$50 \times 1.00 \div 1000=0.05(\mathrm{~mol}) / 5 \times 10^{-2}(\mathrm{~mol})$	
	- M2 maximum mass of copper(II) sulfate	(1)	$0.05(\mathrm{~mol}) \times 249.6=12.48(\mathrm{~g})$	
			Allow TE on M1	
	- M3 percentage yield calculation	(1)	$100 \times 10.87 \div 12.48=87.099$	
			Allow TE on M2 unless over 100\%	
	- M4 answer to 2 or 3 SF	(1)	87(\%) / 87.1(\%)	
			Alternative method	
	- M1moles of sulfuric acid	(1)	$50 \times 1.00 \div 1000=0.05(\mathrm{~mol}) / 5 \times 10^{-2}(\mathrm{~mol})$	
	- M2 moles of copper sulfate	(1)	$\begin{aligned} & 10.87(\mathrm{~g}) / 249.6(\mathrm{~g})=0.04355(\mathrm{~mol}) / 4.355 \times 10^{-2} \\ & (\mathrm{~mol}) \end{aligned}$	
	- M3 percentage yield calculation	(1)	$100 \times 4.355 \times 10^{-2} / 5 \times 10^{-2}=87.099$	
			Allow TE on M1 and M2 unless over 100\%	
	- M4 answer to 2 or 3 SF	(1)	87(\%) / 87.1(\%)	
	Correct answer with some working scores (4)		M4 dependent on a sensible calculation that involves either a mass or moles that has been calculated.	
			Ignore incorrect rounding by truncating intermediate figures eg 0.435 (mol)	

(Total for Question $20=14$ marks)

12 b

bond sigma σ
σ bond

Scores 0

Do not award single lines as there must be an area of electron density.

Do not award if the orbits are shown
overlapping in a random position away from the Cs.

Scores 0

Scores 0

Do not award electron rings or contour lines

Allow if both bonds are correct and labelled the wrong way round score (1)

\begin{tabular}{|c|c|c|c|c|}
\hline Question Number \& Answer \& \& Additional Guidance \& Mark \\
\hline 21(b)(i) \& \begin{tabular}{l}
Steam and catalyst \\
Acidified potassium manganate(VII) \\
Bromine
\end{tabular} \& (1)

(1)

(1) \& | Accept skeletal / structural formulae/ or a combination |
| :--- |
| Allow |
| Ignore connectivity of OH unless horizontal but penalise only once Ignore names even if incorrect If wrong number of carbon atoms penalise once only. |
| Do not award any structure with missing bonds. | \& (3)

\hline
\end{tabular}

Question Number	Answer		Additional Guidance	Mark
21(b)(ii)	An explanation that makes reference to the following points: - dipole on HBr and two correct curly arrows - correct intermediate - curly arrow from lone pair on Br^{-}to C^{+}or the space between the Br^{-}to C^{+}	(1) (1) (1)	Arrows must start from the covalent bond. From the $\mathrm{H}-\mathrm{Br}$ bond it must go to the Br or beyond. From the $\mathrm{C}=\mathrm{C}$ bond is must go to the H or in the space. If Br_{2} is added M 2 and M 3 can be scored If 1-bromopropane is the product the intermediate mark cannot be scored so Max 2 Penalise half curly arrows once only If wrong alkene Allow M1 and M3 only. Ignore the product even if incorrect	(3)

Question Number	Answer	Additional Guidance	Mark
21(c)(i)	• $\mathrm{C}_{10} \mathrm{H}_{16}$	$\mathrm{H}_{16} \mathrm{C}_{10}$	(1)
		Ignore working and any names	

Question Number		Additional Guidance	Mark
21(c)(ii)			Answer

Question	Answer	Additional Guidance	Mark	
Number	correct skeletal formula		(1)	
21(c)(iii)	•			

Question Number	Answer	Additional Guidance	Mark
21(c)(iv)	An answer that makes reference to the following points: - moles of hydrogen / H_{2} - ratio of moles hydrogen / H_{2} to alpha-ocimene $=$ number of $\mathrm{C}=\mathrm{C}$ that react - Correct structure If there is no calculation or calculation says H_{2} is in excess M3 can be awarded.	Example of calculation $\begin{aligned} & 3.6 \div 24=0.15(\mathrm{~mol}) \\ & 0.15 \div 0.05=3 \end{aligned}$ Allow TE incorrect moles of H_{2} Allow TE on incorrect ratio of 1 or 2. Ignore length of bonds/bond angles Allow structural or displayed formulae	(3)

(Total for Question 21 = 14 marks)

Question Number	Answer	Additional Guidance	Mark
22(a)(i)	(metallic bonding is) the attraction between positive ions/cations and delocalised electrons	Can be shown as a labelled diagram including the word attraction. Allow electrostatic forces as an alternative to attraction Allow attraction between metal ions and delocalised electrons Allow attraction between (positive) nuclei and delocalised electrons Ignore just 'ions' Ignore free moving electrons/ sea of electrons	

Question Number	Answer	Additional Guidance	Mark
22(b)(i)	- (the electrostatic attraction between) the shared (pair of) electrons and the (two) nuclei (of the bonded atoms)	Allow single nucleus	(1)

Question Number	Answer		Additional Guidance	Mark
22(b)(ii)	An explanation that makes reference to the following points: - phosphorus (P) simple molecular - silicon (Si) giant (covalent/molecular) structure - when phosphorus melts weak London forces are broken and when silicon melts strong covalent bonds are broken	(1) (1) (1)	Allow (small) molecules/ P_{4} / just 'molecular'/simple covalent Allow lattice instead of giant Ignore macromolecular Do not award giant metallic/ionic Allow / dispersion /van der Waals forces/ instantaneous dipole-induced dipole/intermolecular forces Do not award if any mention of intermolecular forces for silicon.	(3)

Question Number	Answer		Additional Guidance	Mark
22(c)(i)	An explanation that makes reference to the following points: - dot-and-cross diagram showing two shared pairs of electrons between S and Cls - rest of diagram correct	(1) (1)	Example of dot-and-cross diagram Allow all dots/all crosses/dots crosses the wrong way round Allow the non-bonded pairs of electrons on S and Cl anywhere and allow non-bonding electrons unpaired. Ignore inner shells Charged species/ions scores 0	(2)

Question Number	Answer	Additional Guidance	Mark
22(c)(ii)	An answer that makes reference to the following points: - bond angle $104.5\left({ }^{\circ}\right)$ - four pairs of electrons/ 2 bonding pairs and 2 lone pairs occupy a position of minimum repulsion - (2)lone pairs repel more than bonding pairs (so the angle is reduced from $109.5\left(^{\circ}\right)$)	Allow 102-105 (actual answer 103°) Allow just electron pairs occupying a position of minimum repulsion and do not penalise for an incorrect number of electron pairs if quoted. Allow maximum separation Ignore bonds/ areas of electron density/atoms Ignore any reference to shapes e.g. angular, V-shaped	(3)

(Total for Question 22 = 13 marks)

Question Number	Answer	Additional Guidance	Mark
23(a)(i)	- $\mathrm{Li}(\mathrm{g}) \rightarrow \mathrm{Li}^{+}(\mathrm{g})+\mathrm{e}^{(-)}$	Both species and states must be correct Allow $\mathrm{Li}(\mathrm{~g})-\mathrm{e}^{(-)} \rightarrow \mathrm{Li}^{+}(\mathrm{g})$ Ignore state symbol on e^{-}	(1)

Question Number	Answer	Additional Guidance	
23(a)(ii)	An explanation that makes reference to the following points: (on moving across the period) there is an increase in the number of protons/atomic number/nuclear charge	(1)	Allow effective nuclear charge Allow smaller atomic radius
	(The electrons are in the same shell so there is a) greater attraction between the nucleus and electron(s)	(1)	Allow same/similar shielding Allow attraction between protons and electrons

Question Number	Answer		Additional Guidance	Mark
23(a)(iii)	An explanation that makes reference to the following points: Oxygen (even though it has one more proton) - M1 the electron is being removed from a (2)p orbital that is paired / full - M2 less energy is needed to remove a paired electron / there is repulsion between the paired electrons OR Nitrogen (even though it has one fewer proton) - M1 the electron is being removed from a (2)p orbital that is unpaired - M2 more energy is needed to remove an unpaired electron	(1) (1) (1) (1)	Allow the electron is being removed from the pair of electrons in the (2)p sub-shell Allow the porbital contains two electrons Do not award p shell Do not award 3p Allow there is spin-pair repulsion Allow easier to remove a paired electron Allow there is repulsion between the electrons if pairing or 2 electrons of full orbital is mentioned in M1 Allow the electron is being removed from a half-filled (2)p sub-shell Allow the electron is being removed from a (2)p orbital that only contains one electron. Do not award p shell Do not award 3p Allow more energy is required to remove this electron if unpaired is mentioned in M1 Allow this arrangement is stable, so more energy is needed to remove the electron M1 can be scored with a diagram Ignore reference to shielding/lone pairs	(2)

Question Number	Answer	Additional Guidance	Mark
24(a)	- M1 conversion of volume to m^{3} - M2 rearrangement of Ideal Gas Equation - M3 conversion of pressure and evaluation to give number of moles - M4 calculation of molar mass	Example of calculation $\begin{align*} & 72.5 \times 10^{-6}=7.25 \times 10^{-5} / 0.0000725\left(\mathrm{~m}^{3}\right) \tag{1}\\ & n=\frac{p V}{R T} \\ & \frac{100000 \times 7.25 \times 10^{-5}}{8.31 \times 358}=2.4370 \times 10^{-3} / 0.002437(\mathrm{~mol}) \tag{1} \end{align*}$ Allow TE on volume from M1 $\frac{0.210}{2.4370 \times 10^{-3}}=86.172=86\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ Allow TE on moles from M3 Ignore SF except 1SF Ignore units even if incorrect	(4)

| Question
 Number | Answer | Additional Guidance |
| :--- | :---: | :--- | :---: |
| $\mathbf{2 4 (b)}$ | \bullet hexane or any alkane with the molecular formula of $\mathrm{C}_{6} \mathrm{H}_{14}$ | Allow name or structural/displayed/skeletal
 formula
 Allow TE on sensible mass from (a)
 If no mass allow hexane
 If both name and formula/structure given they must
 match
 The name or formula must match the mass in (a) |

(Total for Question $24=5$ marks)
(Total for Section $B=60$ marks) TOTAL FOR PAPER $=\mathbf{8 0}$ MARKS

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

